From 1 - 10 / 31
  • <div>The presence of Pliocene marine sediments in the Myponga and Meadows basins within the Mt Lofty Ranges south of Adelaide is testament to over 200&nbsp;m of tectonic uplift within the last 5 Myr (e.g., Sandiford 2003, Clark 2014). The spatiotemporal distribution of uplift amongst the various faults within the range and along the range fronts is poorly understood. Consequently, large uncertainties are associated with estimates of the hazard that the faults pose to proximal communities and infrastructure.</div><div>&nbsp;</div><div>We present the preliminary results of a paleoseismic investigation of the southern Willunga Fault, ~40 km south of Adelaide. Trenches were excavated across the fault to examine the relationships between fault planes and sedimentary strata. Evidence is preserved for 3-5 ground-rupturing earthquakes since the Middle to Late Pleistocene, with single event displacements of 0.5 – 1.7 m. Dating of samples will provide age constraints on the timing of these earthquakes. This most recent part of the uplift history may then be related to the longer-term landscape evolution evidenced by the uplifted basins, providing an enhanced understanding of the present-day seismic hazard.</div> This abstract was presented at the Australian & NZ Geomorphology Group (ANZGG) Conference in Alice Springs 26-30 September 2022. https://www.anzgg.org/images/ANZGG_2022_First_circular_Final_V3.pdf

  • People in Australia are surprised to learn that hundreds of earthquakes occur below our feet every year. The majority are too small to feel, let alone cause any damage. Despite this, we are not immune to large earthquakes.

  • The 2018 National Seismic Hazard Assessment (NSHA18) aims to provide the most up-to-date and comprehensive understanding of seismic hazard in Australia. As such, NSHA18 includes a range of alternative models for characterising seismic sources and ground motions proposed by members of the Australia earthquake hazard community. The final hazard assessment is a weighted combination of alternative models. This report describes the use of a structured expert elicitation methodology (the ‘Classical Model’) to weight the alternative models and presents the complete results of this process. Seismic hazard assessments are inherently uncertain due to the long return periods of damaging earthquakes relative to the time period of human observation. This is especially the case for low-seismicity regions such as Australia. Despite this uncertainty, there is a demand for estimates of seismic hazard to underpin a range of decision making aimed at reducing the impacts of earthquakes to society. In the face of uncertainty, experts will propose alternative models for the distribution of earthquake occurrence in space, time and magnitude (i.e. seismic source characterisation), and how ground shaking is propagated through the crust (i.e. ground motion characterisation). In most cases, there is insufficient data to independently and quantitatively determine a ‘best’ model. Therefore it is unreasonable to expect, or force, experts to agree on a single consensus model. Instead, seismic hazard assessments should capture the variability in expert opinion, while allowing that not all experts are equally adept. Logic trees, with branches representing mutually exclusive models weighted by expert opinion, can be used to model this uncertainty in seismic hazard assessment. The resulting hazard assessment thereby captures the range of plausible uncertainty given current knowledge of earthquake occurrence in Australia. For the NSHA18, experts were invited to contribute peer-reviewed seismic source models for consideration, resulting in 16 seismic source models being proposed. Each of these models requires values to be assigned to uncertain parameters such as the maximum magnitude earthquake expected. Similarly, up to 20 published ground motion models were identified as being appropriate for characterising ground motions for different tectonic regions in Australia. To weight these models, 17 experts in seismic hazard assessment, representative of the collective expertise of the Australian earthquake hazard community, were invited to two workshops held at Geoscience Australia in March 2017. At these workshops, the experts each assigned weights to alternative models representing their degree of belief that a particular model is the ‘true’ model. The experts were calibrated through a series of questions that tested their knowledge of the subject and ability to assess the limits to their knowledge. These workshops resulted in calibrated weights used to parameterise the final seismic source model and ground motion model logic trees for NSHA18. Through use of a structured expert elicitation methodology these weights have been determined in a transparent and reproducible manner drawing on the full depth of expertise and experience within the Australia earthquake hazard community. Such methodologies have application to a range of uncertain problems beyond the case of seismic hazard assessment presented here.

  • Instrumentally observed earthquakes sequences typically show clusters of earthquakes interspersed with periods of quiescence. These ‘bursty’ sequences also have correlated inter-event times (‘long-term memory’). In contrast, elastic rebound theory forms the basis of the standard earthquake cycle model, and predicts large earthquakes to occur regularly through cycles of strain accumulation and release (periodicity). In this model the conditional probability of future large earthquakes is reduced immediately following fault rupture, and inter-event times are independent. Here we use the burstiness and memory coefficient metrics to characterize more than 100 long-term earthquake records. We find that large earthquake occurrence on the majority of Earth’s faults is weakly periodic and does not exhibit long-term memory; earthquakes occur more regularly than a random Poisson process although inter-event times are variable. In contrast, clustering occurs in slowly deforming regions (annual rates < 2 x 10-4), and is not explained by elastic rebound theory. <b>Citation:</b> Griffin, J. D., Stirling, M. W., & Wang, T. (2020). Periodicity and clustering in the long‐term earthquake record. <i>Geophysical Research Letters</i>, 47, e2020GL089272. https://doi.org/10.1029/2020GL089272

  • The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses. <b>Citation: </b>King, T. R., Quigley, M., Clark, D., Zondervan, A., May, J.-H., & Alimanovic, A. (2021). Paleoseismology of the 2016 M-W 6.1 Petermann earthquake source: Implications for intraplate earthquake behaviour and the geomorphic longevity of bedrock fault scarps in a low strain-rate cratonic region. <i>Earth Surface Processes and Landforms</i>, 46(7), 1238–1256.

  • Sites recording the extinction or extirpation of tropical–subtropical and cool–cold temperate rainforest genera during the Plio–Pleistocene aridification of Australia are scattered across the continent, with most preserving only partial records from either the Pliocene or Pleistocene. The highland Lake George basin is unique in accumulating sediment over c. 4 Ma although interpretation of the plant microfossil record is complicated by its size (950 km2), neotectonic activity and fluctuating water levels. A comparison of this and other sites confirms (1) the extinction of rainforest at Lake George was part of the retreat of Nothofagus-gymnosperm communities across Australia during the Plio–Pleistocene; (2) communities of warm- and cool-adapted rainforest genera growing under moderately warm-wet conditions in the Late Pliocene to Early Pleistocene have no modern analogues; (3) the final extirpation of rainforest taxa at Lake George occurred during the Middle Pleistocene; and (4) the role of local wildfires is unresolved although topography, and, elsewhere, possibly edaphic factors allowed temperate rainforest genera to persist long after these taxa became extinct or extirpated at low elevations across much of eastern Australia. Araucaria, which is now restricted to the subtropics–tropics in Australia, appears to have survived into Middle Pleistocene time at Lake George, although the reason remains unclear. <b>Citation:</b> Macphail Mike, Pillans Brad, Hope Geoff, Clark Dan (2020) Extirpations and extinctions: a plant microfossil-based history of the demise of rainforest and wet sclerophyll communities in the Lake George basin, Southern Tablelands of NSW, south-east Australia. <i>Australian Journal of Botany </i>68, 208-228.

  • <div>The 1 March 1954 earthquake in South Australia is the most damaging earthquake to impact the densely populated Adelaide region since European settlement. Previous interpretations have associated the event with the Eden-Burnside Fault zone, with a presumed epicentre near Darlington. Surprisingly, comparing macroseismic intensities from the 1954 earthquake with similar modern observational datasets suggests the 1954 event was perhaps larger than previously thought. We assess the validity of this observation by reviewing available macroseismic and instrumental data. We observe damaging shaking extending east from Adelaide into the Adelaide Hills, but without a well-defined locus of higher intensities. The limited teleseismic observations lead us to further speculate that the 1954 earthquake could have been deeper and/or associated with a higher-than-normal stress drop. These new findings question the conventionally assumed location for the 1954 earthquake. Our work highlights the potential seismic hazards faced by large urban centres in Australia such as Adelaide.</div> This paper was presented to the 2022 Australian Earthquake Engineering Society (AEES) Conference 24-25 November (https://aees.org.au/aees-conference-2022/)

  • This ecat record refers to the data described in ecat record 123048. The data, supplied in shapefile format, is an input to the 2018 National Seismic Hazard Assessment for Australia (NSHA18) product (ecat 123020) and the 2018 Probabilistic Tsunami Hazard Assessment for Australia (PTHA18) product (ecat 122789).

  • This Geoscience Australia Record contains technical data and input files that, when used with the Global Earthquake Model’s (GEM’s) OpenQuake-engine probabilistic seismic hazard analysis software (Pagani et al., 2014), will enable end users to explore and reproduce the 2018 National Seismic Hazard Assessment (NSHA18) of Australia (Allen et al., 2018a). This report describes the NSHA18 input data only and does not discuss the scientific rationale behind the model development. These details are provided in Allen et al. (2018a) and references therein.

  • Located within an intraplate setting, continental Australia has a relatively low rate of seismicity compared with its surrounding plate boundary regions. However, the plate boundaries to the north and east of Australia host significant earthquakes that can impact Australia. Large plate boundary earthquakes have historically generated damaging ground shaking in northern Australia, including Darwin. Large submarine earthquakes have historically generated tsunami impacting the coastline of Australia. Previous studies of tsunami hazard in Australia have focussed on the threat from major subduction zones such as the Sunda and Kermadec Arcs. Although still subject to uncertainty, our understanding of the location, geometry and convergence rates of these subduction zones is established by global tectonic models. Conversely, actively deforming regions in central and eastern Indonesia, the Papua New Guinea region and the Macquarie Ridge region are less well defined, with deformation being more continuous and less easily partitioned onto discrete known structures. A number of recently published geological, geodetic and seismological studies are providing new insights into present-day active tectonics of these regions, providing a basis for updating earthquake source models for earthquake and tsunami hazard assessment. This report details updates to earthquake source models in active tectonic regions along the Australian plate boundary, with a primary focus on regions to the north of Australia, and a subsidiary focus on the Puyesgur-Macquarie Ridge-Hjort plate boundary south of New Zealand. The motivation for updating these source models is threefold: 1. To update regional source models for the 2018 revision of the Australian probabilistic tsunami hazard assessment (PTHA18); 2. To update regional source models for the 2018 revision of the Australian national seismic hazard assessment (NSHA18); and 3. To provide an updated database of earthquake source models for tsunami hazard assessment in central and eastern Indonesia, in support of work funded through the Department of Foreign Affairs and Trade (DFAT) DMInnovation program.